Agglomeriertes Schweißpulver BF 3.5

Schweißpulvertype: Aluminat-Basisch

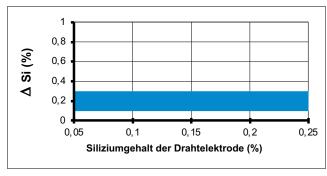
Normbezeichnung: ISO 14174 – S A AB 1 67 AC H5*

Eigenschaften:

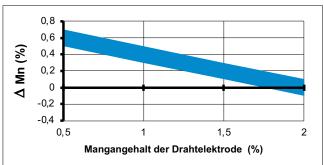
BF 3.5 ist ein agglomeriertes Schweißpulver des Aluminat-basischen Typs und eignet sich für das Schweißen von Baustählen, Rohrbaustählen, Kesselblechen sowie Feinkornbaustählen. BF 3.5 kann für das Ein- und Mehrlagenschweißen von Längs-/Rundnähten sowie Kehlnähten verwendet werden. Es ist für das Schweißen von Eindraht/Doppeldraht/Tandem und Mehrdrahtverfahren einsetzbar. BF 3.5 zeichnet sich durch gute

Schlackenlöslichkeit aus und kann deswegen auch in engen Nahtvorbereitungen verwendet werden. Charakteristisch für das Pulver sind ein mittlerer Si- und Mn-Zubrand sowie ein sehr niedriger Wasserstoffgehalt. Es ist für das Schweißen von Gleich- und Wechselstrom geeignet.

Einsatzgebiete:


Verbindungsschweißen un- und niedriglegierter Baustähle bis S 355 J2 G3 (St 52-3N) nach EN 10025; Feinkornbaustähle bis einschließlich 420 N/mm2 Streckgrenze (t < 50 mm) und Kesselbaustähle wie P265GH (H II) und 16Mo3/A335 Gr. P1.

Hauptbestandteile:


SiO ₂ + TiO ₂	Al ₂ O ₃ + MnO	CaO + MgO	CaF ₂					
20 %	30 %	30 %	15 %					
Basizitätsgrad nach Boniszewski: ~1,7								

Metallurgisches Verhalten nach ISO 14174 Stromart DC:

Zubrand von Silizium

Ab-/Zubrand von Mangan

Pulverschüttgewicht: 1,1 kg/dm³ (l) Körnung DIN EN 760: 2–16 (Tyler 10×65)

Strombelastbarkeit: bis 1.500 A Gleich- oder Wechsel-

strom bei Eindraht

Verpackung: 25 kg PE-Säcke oder

500-1.250 kg Big Bags

Lagerung und Haltbarkeit: Originalverpacktes Schweißpulver in geschlossenen Säcken und in trockenen Räumen ist bis zu einem Jahr ab Lieferdatum lagerfähig.

Pulverspezifische Rücktrocknungsbedingungen:

200-250 °C effektive Pulvertemperatur

 $^{^{\}star}$ Diffusibler Wasserstoffgehalt H5: Bestimmung nach ISO 3690; Stromart DC; Trocknung bei 200–250 °C

Normbezeichnungen des reinen Schweißgutes von Draht-Pulver-Kombinationen:

Drahtelektrode		RSG / ISO 15792-1: Form 1.3	AWS A5.17M/5.23M	AWS A5.17/5.23	
ISO 14171-A	ISO 14171-A	N30/130 13/92-1: F0111 1.3	AWS AS. 17 W1/ 5.23 W	AWS A3.11/3.23	
BA-S1	EL12	ISO 14171-A: S 38 2 AB S1	F48A2-EL12	F7A0-EL12	
BA-S2	EM12(K)	ISO 14171-A: S 42 4 AB S2	F48A4/P4-EM12(K)	F7A4/P4-EM12(K)	
BA-S2Si	EM12K	ISO 14171-A: S 42 4 AB S2Si	F48A4/P4-EM12K	F7A4/P4-EM12K	
BA-S3Si	EH12K	ISO 14171-A: S 46 4 AB S3Si	F55A4/F48P4-EH12K	F8A5/F7P4-EH12K	
BA-S2Mo	EA2	ISO 14171-A: S 46 3 AB S2Mo	F55A4/P4-EA2-A2	F8A2/P2-EA2-A2	
BA-S2NiCu	EG	ISO 14171-A: S 46 3 AB S2Ni1Cu	F55A3/F49P3-EG-G	F8A2/F7P2-EG-G	

Normbezeichnungen der Lage/Gegenlage (Two-Run) von Draht-Pulver-Kombinationen:

Drahtelektrode		Two-Run / ISO 15792-2: Form 2.5	AWS A5.17M/5.23M	AWS AS 17/5 02	
ISO 14171-A	AWS A5.17/.23	1W0-Rull/ 130 13/92-2. FUIII 2.3	AWS A5.17W/ 5.25W	AWS AS.17/5.25	
BA-S1	EL12	ISO 14171-A: S 2T 2 AB S1	F43TA2-EL12	F6TA2-EL12	
BA-S2	EM12(K)	ISO 14171-A: S 3T 2 AB S2	F49TA2-EM12(K)	F7TA2-EM12(K)	
BA-S2Si	EM12K	ISO 14171-A: S 3T 2 AB S2Si	F49TA2-EM12K	F7TA2-EM12K	
BA-S2Mo	EA2	ISO 14171-A: S 4T 2 AB S2Mo	F55TA2-EA2	F8TA2-EA2	

Chemische Analyse des Schweißgutes nach EN ISO 15792-1 und AWS A5.17/5.23: (Richtwerte in Prozent)

Drahtelektrode		С	Si	Mn	Мо	Ni	Cr
BA-S1	EL12	0,05-0,08	0,2-0,4	0,9-1,3			
BA-S2	EM12(K)	0,05-0,08	0,2-0,4	1,1-1,5			
BA-S2Si	EM12K	0,05-0,08	0,2-0,5	1,1-1,5			
BA-S3Si	EH12K	0,05-0,08	0,3-0,5	1,5-1,9			
BA-S2Mo	EA2	0,04-0,08	0,2-0,4	1,1-1,5	0,5		
BA-S2NiCu	EG	0,05-0,08	0,3-0,5	1,1-1,5		0,8	Cr: 0,20-0,40 Cu: 0.40-0.65

Mechanische Gütewerte des Schweißgutes nach EN ISO 15792-1 und AWS A5.17/5.23: (Richtwerte)

Drahtelektrode		Wärme- behandlung	R _{p0,2} MPa	R _m MPa	A ₅ %	Kerbschlagarbeit ISO-V (J) bei				
						± 0 °C +32 °F	-20 °C -4 °F	-30 °C -22 °F	-40 °C -40 °F	-51 °C -60 °F
BA-S1	EL12	AW	>400	>500	>24	>70	>50		•	•
BA-S2	EM12(K)	AW	>420	>500	>22	>100	>70	>60	>47	
		S*	>390	>490	>22	>100	>70	>60	>47	
BA-S2Si	EM12K	AW	>430	>500	>22	>100	>70	>60	>47	
		S*	>400	>490	>22	>100	>70	>60	>47	
BA-S3Si	EH12K	AW	>470	>560	>22	>100	>80	>60	>47	
		S*	>400	>500	>22	>100	>80	>60	>27	
BA-S2Mo	EA2	AW	>490	>570	>20	>100	>80	>47		
		S	>470	>550	>22	>100	>80	>47		
BA-S2NiCu	EG	AW	>470	>550	>22	>100	>70	>47		

Wärmenachbehandlung: * 620 °C/2 h